Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Theranostics ; 14(5): 1886-1908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505621

RESUMO

Rationale: Lymphangiogenesis plays a critical role in the transplanted heart. The remodeling of lymphatics in the transplanted heart and the source of newly formed lymphatic vessels are still controversial, especially the mechanism of lymphangiogenesis remains limited. Methods: Heart transplantation was performed among BALB/c, C57BL/6J, Cag-Cre, Lyve1-CreERT2;Rosa26-tdTomato and Postn(2A-CreERT2-wpre-pA)1;Rosa26-DTA mice. scRNA-seq, Elisa assay, Western blotting, Q-PCR and immunohistochemical staining were used to identify the cells and cell-cell communications of allograft heart. Cell depletion was applied to in vivo and in vitro experiments. Whole-mount staining and three-dimensional reconstruction depicted the cell distribution within transparent transplanted heart. Results: Genetic lineage tracing mice and scRNA-seq analysis have revealed that these newly formed lymphatic vessels mainly originate from recipient LYVE1+ cells. It was found that LECs primarily interact with activated fibroblasts. Inhibition of lymphatic vessel formation using a VEGFR3 inhibitor resulted in a decreased survival time of transplanted hearts. Furthermore, when activated fibroblasts were ablated in transplanted hearts, there was a significant suppression of lymphatic vessel generation, leading to earlier graft failure. Additional investigations have shown that activated fibroblasts promote tube formation of LECs primarily through the activation of various signaling pathways, including VEGFD/VEGFR3, MDK/NCL, and SEMA3C/NRP2. Interestingly, knockdown of VEGFD and MDK in activated fibroblasts impaired cardiac lymphangiogenesis after heart transplantation. Conclusions: Our study indicates that cardiac lymphangiogenesis primarily originates from recipient cells, and activated fibroblasts play a crucial role in facilitating the generation of lymphatic vessels after heart transplantation. These findings provide valuable insights into potential therapeutic targets for enhancing graft survival.


Assuntos
Linfangiogênese , Vasos Linfáticos , 60598 , Camundongos , Animais , Camundongos Endogâmicos C57BL , Coração
2.
Int J Biol Macromol ; 265(Pt 1): 130929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508548

RESUMO

The construction of Janus structures on cotton fabrics can endow the fabrics with dynamic multifunctional properties. However, because of the large pores between fabric fibers, the formation of Janus structures by grafting different functional coatings on the double surfaces of cotton fabrics via dipping technology is difficult. To construct Janus structures on cotton fabrics, mist polymerization and "grafting-through" polymerization technologies were used to graft polylauryl methacrylate and a heat-shrinkable thermosensitive antibacterial polymer on the inside and outside surfaces of the cotton fabric, respectively. The as-formed Janus cotton fabric demonstrated excellent antibacterial durability. Even after subjecting the Janus fabric to 70 laundering cycles, its bacterial rates against Escherichia coli and Staphylococcus aureus were > 93.0 %. Compared with the pristine cotton fabric, when the ambient temperature is high or low, the Janus fabric can adjust the skin temperature within 5 min by approximately ±3.0 °C. Additionally, the fabric exhibited excellent waterproof and moisture permeability properties. The Janus cotton fabrics prepared by the proposed strategy possess significant potential for applications in the field of wearable textiles.


Assuntos
Fibra de Algodão , Nanopartículas Metálicas , Prata/química , Polimerização , Nanopartículas Metálicas/química , Têxteis/microbiologia , Antibacterianos/química , Escherichia coli
3.
Medicine (Baltimore) ; 103(10): e37364, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457571

RESUMO

Obesity is a risk factor for glucose metabolism disorder. This study explored the association between the tri-ponderal mass index (TMI) and indicators of glucose metabolism disorder in children with obesity in China. This retrospective case-control study included children aged 3 to 18 years old diagnosed with obesity at Jiangxi Provincial Children's Hospital (China) between January 2020 and April 2022. Demographic and clinical characteristics were obtained from the medical records. Factors associated with glucose metabolism disorder were explored by logistic regression analysis. Pearson correlations were calculated to evaluate the relationships between TMI and indicators of glucose metabolism disorder. The analysis included 781 children. The prevalence of glucose metabolism disorder was 22.0% (172/781). The glucose metabolism disorder group had an older age (11.13 ±â€…2.19 vs 10.45 ±â€…2.33 years old, P = .001), comprised more females (76.8% vs 66.9%, P = .008), had a higher Tanner index (P = .001), and had a larger waist circumference (89.00 [82.00-95.00] vs 86.00 [79.00-93.75] cm, P = .025) than the non-glucose metabolism disorder group. There were no significant differences between the glucose metabolism disorder and non-glucose metabolism disorder groups in other clinical parameters, including body mass index (26.99 [24.71-30.58] vs 26.57 [24.55-29.41] kg/m2) and TMI (18.38 [17.11-19.88] vs 18.37 [17.11-19.88] kg/m3). Multivariable logistic regression did not identify any factors associated with glucose metabolism disorder. Furthermore, TMI was only very weakly or negligibly correlated with indicators related to glucose metabolism disorder. TMI may not be a useful indicator to screen for glucose metabolism disorder in children with obesity in China.


Assuntos
Obesidade Pediátrica , Criança , Feminino , Humanos , Pré-Escolar , Adolescente , Obesidade Pediátrica/complicações , Obesidade Pediátrica/epidemiologia , Estudos de Casos e Controles , Estudos Retrospectivos , Índice de Massa Corporal , Fatores de Risco
4.
Hypertension ; 81(4): 787-800, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240164

RESUMO

BACKGROUND: High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS: Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS: We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS: This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.


Assuntos
Lesões das Artérias Carótidas , Hipertensão , Lesões do Sistema Vascular , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Células Endoteliais/metabolismo , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/terapia , Neointima/patologia , Ratos Endogâmicos WKY , RNA
5.
Small ; : e2308680, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225709

RESUMO

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37531301

RESUMO

Vascular aging is directly related to several major diseases including clinical primary hypertension. Conversely, elevated blood pressure itself accelerates vascular senescence. However, the interaction between vascular aging and hypertension has not been characterized during hypertensive aging. To depict the interconnectedness of complex mechanisms between hypertension and aging, we performed single-cell RNA sequencing of aorta, femoral and mesentery arteries, respectively, from male Wistar Kyoto rats and male spontaneously hypertensive rats aging 16 or 72 weeks. We integrated 12 data sets to map the blood vessels of senile hypertension from 3 perspective: vascular aging, hypertension, and vascular type. We found that aging and hypertension independently exerted a significant impact on the alteration of cellular composition and artery remodeling, even greater when superimposed. Consistently, smooth muscle cells (SMCs) underwent phenotypic switching from contractile toward synthetic, apoptotic, and senescent SMCs with aging/hypertension. Furthermore, we identified 3 subclusters of Spp1high, encoding protein osteopontin (OPN), synthetic SMCs, Spp1high matrix activated fibroblasts, and Spp1high scar-associated macrophage involved in hypertensive aging. Spp1high scar-associated macrophage enriched for reactive oxygen species metabolic process and cell migration-associated function. Cell-cell communication analysis revealed Spp1-Cd44 receptor pairing was markedly aggravated in the hypertensive aging condition. Importantly, the concentration of serum OPN significantly potentiated in aged hypertensive patients compared with the normal group. Thus, we provide a comprehensive cell atlas to systematically resolve the cellular diversity and dynamic cellular communication changes of the vessel wall during hypertensive aging, identifying a protein marker OPN as a potential regulator of vascular remodeling during hypertensive aging.


Assuntos
Cicatriz , Hipertensão , Humanos , Ratos , Animais , Masculino , Idoso , Cicatriz/metabolismo , Cicatriz/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Artérias Mesentéricas/patologia , Envelhecimento/fisiologia
7.
Cell Signal ; 113: 110929, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37875231

RESUMO

Abnormal differentiation and proliferation of chondrocytes leads to various diseases related to growth and development. The process of chondrocyte differentiation involves a series of complex cellular and molecular interactions. X-box binding protein 1 (XBP1), an essential molecule of the unfolded protein response (UPR) in Endoplasmic Reticulum (ER) stress, participated in cartilage development and causes other related diseases. We previously reported that XBP1 deficiency in cartilage impacts the function and associated diseases of many different tissues including cartilage. However, how differential expression of genes modulates the roles of cartilage and other tissues when XBP1 is lack of in chondrocytes remains unclear. We aimed to screen for differentially expressed (DE) genes in cartilage, brain, heart, and muscle by high-throughput sequencing in XBP1 cartilage-specific knockout (CKO) mice. Further, gene co-expression networks were constructed by weighted gene co-expression network analysis (WGCNA) algorithm and pivot genes were identified in the above four tissues. Protein detection, Hematoxylin-eosin (HE) staining and immunohistochemistry (IHC) experiments have proved that these differentially co-expressed genes participate in the downstream regulatory pathway of different tissues and affect tissue function.Significantly differentially expressed mRNAs [differentially expressed genes (DEGs)] were identified between XBP1 CKO mice and controls in cartilage, brain, heart, and muscle tissues, including 610, 126, 199 and 219 DEGs, respectively. 39 differentially co-expressed genes were identified in the above four tissues, and they were important pivot genes. Comprehensive analysis discovered that XBP1 deficiency in cartilage influences the difference of co-expressed genes between cartilage and other different tissues. These differentially co-expressed genes participate in downstream regulatory pathways of different tissues and affect tissue functions. Collectively, our conclusions may contribute potential biomarkers and molecular mechanisms for the mutual modulation between cartilage and different tissues and the diagnosis and treatment of diseases caused by abnormalities in different tissues. The analysis also provides meaningful insights for future genetic discoveries.


Assuntos
Cartilagem , Resposta a Proteínas não Dobradas , Animais , Camundongos , Cartilagem/metabolismo , Condrócitos/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
8.
Cell Death Dis ; 14(11): 758, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989732

RESUMO

Autophagy inducers can prevent cardiovascular aging and age-associated diseases including atherosclerosis. Therefore, we hypothesized that autophagy-inducing compounds that act on atherosclerosis-relevant cells might have a protective role in the development of atherosclerosis. Here we identified 3,4-dimethoxychalcone (3,4-DC) as an inducer of autophagy in several cell lines from endothelial, myocardial and myeloid/macrophagic origin, as demonstrated by the aggregation of the autophagosome marker GFP-LC3 in the cytoplasm of cells, as well as the downregulation of its nuclear pool indicative of autophagic flux. In this respect, 3,4-DC showed a broader autophagy-inducing activity than another chalcone (4,4- dimethoxychalcone), spermidine and triethylene tetramine. Thus, we characterized the potential antiatherogenic activity of 3,4-DC in two different mouse models, namely, (i) neointima formation with smooth muscle expansion of vein segments grafted to the carotid artery and (ii) genetically predisposed ApoE-/- mice fed an atherogenic diet. In the vein graft model, local application of 3,4-DC was able to maintain the lumen of vessels and to reduce neointima lesions. In the diet-induced model, intraperitoneal injections of 3,4-DC significantly reduced the number of atherosclerotic lesions in the aorta. In conclusion, 3,4-DC stands out as an autophagy inducer with potent antiatherogenic activity.


Assuntos
Aterosclerose , Neointima , Camundongos , Animais , Neointima/tratamento farmacológico , Neointima/patologia , Hiperplasia/patologia , Aterosclerose/patologia , Aorta/patologia , Modelos Animais de Doenças , Autofagia , Camundongos Endogâmicos C57BL
9.
Opt Express ; 31(20): 31982-31992, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859011

RESUMO

Nitrite ion (NO2-) is a common contaminant that can significantly threaten human health and the environment. In this study, we demonstrate a chemical sensing platform to monitor the nitrite concentration using a fiber optofluidic laser (FOFL). An optical fiber, integrated into a microchannel, is used both as an optical micro-cavity and the sensing element. Rhodamine 6 G (Rh6G) in an aqueous micellar solution is used as the laser gain medium. The light intensity change of the lasing spectra is employed as an indicator for the NO2- ion concentration sensing. The lasing properties under different NO2- ion concentrations are experimentally and theoretically investigated to examine the sensing performance of the FOFL. The results show that the limit detection of the FOFL sensor is 0.54 µM, which is 2-order-of-magnitude lower than fluorescence measurement. The sensing mechanism of Rh6G for NO2- detection is studied by using density functional theory (DFT). The calculation results indicate that nitrite influences the electronic distribution of Rh6G based on the heavy atom effect, which leads to the fluorescence quenching of Rh6G in the excited state. In addition, the detection system exhibits favorable selectivity for NO2- ions.

10.
Am J Physiol Cell Physiol ; 325(5): C1228-C1243, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721000

RESUMO

Extracellular adenosine triphosphate (ATP) is one of the most abundant biochemical constitutes within the stem cell microenvironment and is postulated to play critical roles in cell migration. However, it is unclear whether ATP regulates the cell migration of CD34+ vascular wall-resident stem/progenitor cells (VW-SCs) and participates in angiogenesis. Therefore, the biological mechanisms of cell migration mediated by ATP was determined by in vivo subcutaneous matrigel plug assay, ex vivo aortic ring assay, in vitro transwell migration assay, and other molecular methods. In the present study, ATP dose-dependently promoted CD34+ VW-SCs migration, which was more obviously attenuated by inhibiting or knocking down P2Y2 than P2Y6. Furthermore, it was confirmed that ATP potently promoted the migration of resident CD34+ cells from cultured aortic artery rings and differentiation into endothelial cells in matrigel plugs by using inducible lineage tracing Cd34-CreERT2; R26-tdTomato mice, whereas P2Y2 and P2Y6 blocker greatly inhibited the effect of ATP. In addition, ATP enhanced the protein expression of stromal interaction molecule 1 (STIM1) on cell membrane, blocking the calcium release-activated calcium (CRAC) channel with shSTIM1 or BTP2 apparently inhibited ATP-evoked intracellular Ca2+ elevation and channel opening, thereby suppressing ATP-driven cell migration. Moreover, extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 and p38 inhibitor SB203580 remarkably inhibited ERK and p38 phosphorylation, cytoskeleton rearrangement, and subsequent cell migration. Unexpectedly, it was found that knocking down STIM1 greatly inhibited ATP-triggered ERK/p38 activation. Taken together, it was suggested that P2Y2 signaled through the CRAC channel mediated Ca2+ influx and ERK/p38 pathway to reorganize the cytoskeleton and promoted the migration of CD34+ VW-SCs.NEW & NOTEWORTHY In this study, we observed that the purinergic receptor P2Y2 is critical in the regulation of vascular wall-resident CD34+ cells' migration. ATP could activate STIM1-mediated extracellular Ca2+ entry by triggering STIM1 translocation to the plasma membrane, and knockdown of STIM1 prevented ERK/p38 activation-mediated cytoskeleton rearrangement and cell migration.

11.
Analyst ; 148(20): 5050-5059, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668015

RESUMO

We report a fiber optofluidic laser (FOFL) using an RhB-doped ionic liquid (BmimPF6) as the gain medium and explore its application for large dynamic range highly sensitive pH sensing. Due to the high Q-factor of the FOFL and the unique merits of BmimPF6, lasing emission presents a threshold of only 0.61 µJ mm-1. Particularly, lasing emission behaviors are strongly dependent on the pH value of the gain medium, i.e., in the pH range 4.28-6.37, the lasing central wavelength blue-shifts monotonically with a sensitivity as high as 5.02 nm per pH unit, which we attribute to the conversion of the cationic form of RhB to the zwitterionic form caused by the deprotonation of the COOH group. Under alkaline conditions (pH 7.20-11.17), the lasing emission intensity exhibits a significant decrease and the corresponding lasing central wavelength is also blue-shifted due to the solvent effect. The sensitivity based on the wavelength shift is 3.03 nm per pH unit, which is 4-fold higher than that of fluorescence-based sensing, while the sensitivity based on the variation of the lasing emission intensity is almost three orders of magnitude higher than that of fluorescence-based sensing. Our work presents a novel dual sensing paradigm in response to different pH conditions, which can greatly improve the reliability and discrimination of pH sensing.

12.
Cell Mol Life Sci ; 80(10): 300, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740736

RESUMO

AIMS: Mesenchymal stem cells (MSCs) present in the heart cannot differentiate into cardiomyocytes, but may play a role in pathological conditions. Therefore, the aim of this study was to scrutinise the role and mechanism of MSC differentiation in vivo during heart failure. METHODS AND RESULTS: We performed single-cell RNA sequencing of total non-cardiomyocytes from murine and adult human hearts. By analysing the transcriptomes of single cells, we illustrated the dynamics of the cell landscape during the progression of heart hypertrophy, including those of stem cell antigen-1 (Sca1)+ stem/progenitor cells and fibroblasts. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone marrow-derived Sca1+ cells give rise to fibroblasts. Interestingly, partial depletion of Sca1+ cells alleviated the severity of myocardial fibrosis and led to a significant improvement in cardiac function in Sca1-CreERT2;Rosa26-eGFP-DTA mice. Similar non-cardiomyocyte cell composition and heterogeneity were observed in human patients with heart failure. Mechanistically, our study revealed that Sca1+ cells can transform into fibroblasts and affect the severity of fibrosis through the Wnt4-Pdgfra pathway. CONCLUSIONS: Our study describes the cellular landscape of hypertrophic hearts and reveals that fibroblasts derived from Sca1+ cells with a non-bone marrow source largely account for cardiac fibrosis. These findings provide novel insights into the pathogenesis of cardiac fibrosis and have potential therapeutic implications for heart failure. Non-bone marrow-derived Sca1+ cells differentiate into fibroblasts involved in cardiac fibrosis via Wnt4-PDGFRα pathway.

13.
Arterioscler Thromb Vasc Biol ; 43(10): 1867-1886, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589134

RESUMO

BACKGROUND: Tertiary lymphoid organs (TLOs) are ectopic lymphoid organs developed in nonlymphoid tissues with chronic inflammation, but little is known about their existence in different types of vascular diseases and the mechanism that mediated their development. METHODS: To take advantage of single-cell RNA sequencing techniques, we integrated 28 single-cell RNA sequencing data sets containing 5 vascular disease models (atherosclerosis, abdominal aortic aneurysm, intimal hyperplasia, isograft, and allograft) to explore TLOs existence and environment supporting its growth systematically. We also searched Medline, Embase, PubMed, and Web of Science from inception to January 2022 for published histological images of vascular remodeling for histological evidence to support TLO genesis. RESULTS: Accumulation and infiltration of innate and adaptive immune cells have been observed in various remodeling vessels. Interestingly, the proportion of such immune cells incrementally increases from atherosclerosis to intimal hyperplasia, abdominal aortic aneurysm, isograft, and allograft. Importantly, we uncovered that TLO structure cells, such as follicular helper T cells and germinal center B cells, present in all remodeled vessels. Among myeloid cells and lymphocytes, inflammatory macrophages, and T helper 17 cells are the major lymphoid tissue inducer cells which were found to be positively associated with the numbers of TLO structural cells in remodeled vessels. Vascular stromal cells also actively participate in vascular TLO genesis by communicating with myeloid cells and lymphocytes via CCLs (C-C motif chemokine ligands), CXCL (C-X-C motif ligand), lymphotoxin, BMP (bone morphogenetic protein) chemotactic, FGF-2 (fibroblast growth factor-2), and IGF (insulin growth factor) proliferation mechanisms, particularly for lymphoid tissue inducer cell aggregation. Additionally, the interaction between stromal cells and immune cells modulates extracellular matrix remodeling. Among TLO structure cells, follicular helper T, and germinal center B cells have strong interactions via TCR (T-cell receptor), CD40 (cluster of differentiation 40), and CXCL signaling, to promote the development and maturation of the germinal center in TLO. Consistently, by reviewing the histological images from the literature, TLO genesis was found in those vascular remodeling models. CONCLUSIONS: Our analysis showed the existence of TLOs across 5 models of vascular diseases. The mechanisms that support TLOs formation in different models are heterogeneous. This study could be a valuable resource for understanding and discovering new therapeutic targets for various forms of vascular disease.


Assuntos
Aterosclerose , Remodelação Vascular , Humanos , Hiperplasia/patologia , Análise da Expressão Gênica de Célula Única , Tecido Linfoide/metabolismo , Aterosclerose/patologia
14.
J Heart Lung Transplant ; 42(12): 1651-1665, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37634574

RESUMO

BACKGROUND: Endothelium dysfunction is a central problem for early rejection due to the host alloimmune response and the late status of arteriosclerosis in heart transplantation. However, reliable pieces of evidence are still limited concerning the source of the regenerated endothelium within the transplanted heart. METHODS: We analyzed single-cell RNA sequencing data and constructed an inducible lineage tracing mouse, combined heart transplantation with bone marrow transplantation and a parabiosis model, cellular components, and endothelial cell populations in cardiac graft lesions. RESULTS: Our single-cell RNA sequencing analysis of a transplanted heart allowed for the establishment of an endothelial cell atlas with a heterogeneous population, including arterial, venous, capillary, and lymphatic endothelial cells. Along with genetic cell lineage tracing, we demonstrated that the donor cells were mostly replaced by recipient cells in the cardiac allograft, up to 83.29% 2 weeks after transplantation. Furthermore, recipient nonbone marrow CD34+ endothelial progenitors contributed significantly to extracellular matrix organization and immune regulation, with higher apoptotic ability in the transplanted hearts. Mechanistically, peripheral blood-derived human endothelial progenitor cells differentiate into endocardial cells via Vascular endothelial growth factor receptor-mediated pathways. Host circulating CD34+ endothelial progenitors could repair the damaged donor endothelium presumably through CCL3-CCR5 chemotaxis. Partial depletion of host CD34+ cells resulted in delayed endothelial regeneration. CONCLUSIONS: We created an annotated fate map of endothelial cells in cardiac allografts, indicating how recipient CD34+ cells could replace the donor endothelium via chemokine CCL3-CCR5 interactions. The mechanisms we discovered could have a potential therapeutic effect on the long-term outcomes of heart transplantation.


Assuntos
Transplante de Coração , Camundongos , Humanos , Animais , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Doadores de Tecidos , Endotélio , Endotélio Vascular/patologia
15.
Commun Chem ; 6(1): 173, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608192

RESUMO

The quest for effective virtual screening algorithms is hindered by the scarcity of training data, calling for innovative approaches. This study presents the use of experimental electron density (ED) data for improving active compound enrichment in virtual screening, supported by ED's ability to reflect the time-averaged behavior of ligands and solvents in the binding pocket. Experimental ED-based grid matching score (ExptGMS) was developed to score compounds by measuring the degree of matching between their binding conformations and a series of multi-resolution experimental ED grids. The efficiency of ExptGMS was validated using both in silico tests with the Directory of Useful Decoys-Enhanced dataset and wet-lab tests on Covid-19 3CLpro-inhibitors. ExptGMS improved the active compound enrichment in top-ranked molecules by approximately 20%. Furthermore, ExptGMS identified four active inhibitors of 3CLpro, with the most effective showing an IC50 value of 1.9 µM. We also developed an online database containing experimental ED grids for over 17,000 proteins to facilitate the use of ExptGMS for academic users.

16.
Sci Adv ; 9(35): eadh8939, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647392

RESUMO

RIPK1 is crucial in the inflammatory response. The process of vascular graft remodeling is also involved in endothelial inflammation, which can influence the behavior of smooth muscle cells. However, the role of endothelial RIPK1 in arterial bypass grafts remains unknown. Here, we established an arterial isograft mouse model in wild-type and endothelial RIPK1 conditional knockout mice. Progressive vascular remodeling and neointima formation occurred in the graft artery, showing SMC accumulation together with endothelial inflammatory adhesion molecule and cytokine expression. Endothelial RIPK1 knockout exacerbated graft stenosis by increasing secretion of N-Shh. Mechanistically, RIPK1 directly phosphorylated EEF1AKMT3 at Ser26, inhibiting its methyltransferase activity and global protein synthesis, which further attenuated N-Shh translation and secretion. Consistently, treatment with the Hedgehog pathway inhibitor GDC0449 markedly alleviated RIPK1 knockout-induced graft stenosis. Our results demonstrated that endothelial RIPK1 played a protective role in arterial bypass graft vascular remodeling, highlighting that targeting Hedgehog pathway may be an attractive strategy for graft failure in the future.


Assuntos
Arteriosclerose , Besouros , Animais , Camundongos , Artérias , Constrição Patológica , Proteínas Hedgehog , Camundongos Knockout , Remodelação Vascular
17.
Cell Commun Signal ; 21(1): 173, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430253

RESUMO

AIMS: Vascular resident stem cells expressing stem cell antigen-1 (Sca-1+ cells) promote vascular regeneration and remodelling following injury through migration, proliferation and differentiation. The aim of this study was to examine the contributions of ATP signalling through purinergic receptor type 2 (P2R) isoforms in promoting Sca-1+ cell migration and proliferation after vascular injury and to elucidate the main downstream signalling pathways. METHODS AND RESULTS: ATP-evoked changes in isolated Sca-1+ cell migration were examined by transwell assays, proliferation by viable cell counting assays and intracellular Ca2+ signalling by fluorometry, while receptor subtype contributions and downstream signals were examined by pharmacological or genetic inhibition, immunofluorescence, Western blotting and quantitative RT-PCR. These mechanisms were further examined in mice harbouring TdTomato-labelled Sca-1+ cells with and without Sca-1+-targeted P2R knockout following femoral artery guidewire injury. Stimulation with ATP promoted cultured Sca-1+ cell migration, induced intracellular free calcium elevations primarily via P2Y2R stimulation and accelerated proliferation mainly via P2Y6R stimulation. Enhanced migration was inhibited by the ERK blocker PD98059 or P2Y2R-shRNA, while enhanced proliferation was inhibited by the P38 inhibitor SB203580. Femoral artery guidewire injury of the neointima increased the number of TdTomato-labelled Sca-1+ cells, neointimal area and the ratio of neointimal area to media area at 3 weeks post-injury, and all of these responses were reduced by P2Y2R knockdown. CONCLUSIONS: ATP induces Sca-1+ cell migration through the P2Y2R-Ca2+-ERK signalling pathway, and enhances proliferation through the P2Y6R-P38-MAPK signalling pathway. Both pathways are essential for vascular remodelling following injury. Video Abstract.


Assuntos
Remodelação Vascular , Lesões do Sistema Vascular , Animais , Camundongos , Proliferação de Células , Transdução de Sinais , Movimento Celular , Trifosfato de Adenosina
19.
Int J Biol Macromol ; 242(Pt 1): 124731, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148935

RESUMO

The use of more toxic reagents in the finishing of superhydrophobic cotton fabrics is one of the main factors that limit the application of the fabrics. Therefore, a green and sustainable method for preparing superhydrophobic cotton fabrics is urgently needed. In this study, a cotton fabric was etched with phytic acid (PA), which can be extracted from plants, effectively improving the surface roughness of the fabric. Subsequently, the treated fabric was coated with epoxidized soybean oil (ESO)-derived thermosets and then covered with stearic acid (STA). The finished cotton fabric exhibited excellent superhydrophobic properties, with a water contact angle of 156.3°. The superhydrophobic coatings of the finished cotton fabric endowed the fabric with excellent self-cleaning properties, irrespective of the liquid pollutant or solid dust. In addition, the inherent properties of the finished fabric were largely retained after the modification. Therefore, the finished cotton fabric with excellent self-cleaning properties has great potential for applications in the household and clothing fields.


Assuntos
Têxteis , Água , Água/química , Interações Hidrofóbicas e Hidrofílicas
20.
Basic Res Cardiol ; 118(1): 17, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147443

RESUMO

The ambiguous results of multiple CD34+ cell-based therapeutic trials for patients with heart disease have halted the large-scale application of stem/progenitor cell treatment. This study aimed to delineate the biological functions of heterogenous CD34+ cell populations and investigate the net effect of CD34+ cell intervention on cardiac remodeling. We confirmed, by combining single-cell RNA sequencing on human and mouse ischemic hearts and an inducible Cd34 lineage-tracing mouse model, that Cd34+ cells mainly contributed to the commitment of mesenchymal cells, endothelial cells (ECs), and monocytes/macrophages during heart remodeling with distinct pathological functions. The Cd34+-lineage-activated mesenchymal cells were responsible for cardiac fibrosis, while CD34+Sca-1high was an active precursor and intercellular player that facilitated Cd34+-lineage angiogenic EC-induced postinjury vessel development. We found through bone marrow transplantation that bone marrow-derived CD34+ cells only accounted for inflammatory response. We confirmed using a Cd34-CreERT2; R26-DTA mouse model that the depletion of Cd34+ cells could alleviate the severity of ventricular fibrosis after ischemia/reperfusion (I/R) injury with improved cardiac function. This study provided a transcriptional and cellular landscape of CD34+ cells in normal and ischemic hearts and illustrated that the heterogeneous population of Cd34+ cell-derived cells served as crucial contributors to cardiac remodeling and function after the I/R injury, with their capacity to generate diverse cellular lineages.


Assuntos
Células Endoteliais , Traumatismo por Reperfusão , Camundongos , Animais , Humanos , Remodelação Ventricular , Coração , Antígenos CD34 , Isquemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...